
Routing and Scheduling Large File Transfers over Lambda Grids

Amitabha Banerjee†, Wu-chun Feng‡, Biswanath Mukherjee†, and Dipak Ghosal†1
† University of California, Davis

‡ University of California, Los Alamos National Laboratory

Abstract— In many application domains, there exists a need to
aggregate information from information repositories distributed
around the world. In an effort to better link these resources in a
unified manner, middleware researchers put forth the notion of
a grid. With this context applied to bioinformatics, we consider
the problem of aggregating files from distributed databases to
a (grid) computing node over a lambda grid. The challenge is
to identify concurrent routes (i.e., circuit-switched paths) in the
lambda-grid network, along which files should be transmitted,
and to schedule the transfers of these files over their respective
circuits.

To address this challenge, we propose a hybrid approach that
combines off-line and on-line scheduling. The approach first
constructs an off-line schedule based on past profiling of transfer
rates. Then, as files are being transferred, the schedule is modified
on-line, depending on the amount of time that it actually took
to transfer the files. The objective is to minimize the total time
required for data aggregation. To demonstrate the effectiveness of
our approach, we present experimental results using grid nodes
running over an emulated lambda-grid topology.

I. I NTRODUCTION

Many emerging large scale scientific experiments involve
distributed scientific computing. Large quantities of data may
be fetched by a computational experiment from multiple
information repositories spread geographically. A typical ex-
ample is the “Genomes To Life” (GTL) application [1]. The
data related to different aspects of a biological system is
analyzed, processed, and stored at different data warehouses
which are geographically distributed. From time to time, a
supercomputerat a site of scientific experiments may need
to aggregate data from some of these data warehouses before
processing. Data aggregation is done at run time, and hence the
network is the bottleneck in the computation. Even a single
second of idle time, during which data is being aggregated,
represents the loss of several teraflops of computing power [1].
Therefore, minimizing the time required for data aggregation
is the key to improving the overall system throughput.

Many optical circuit switched networks have been provi-
sioned for supporting such large-scale distributed computing.
Examples are CANARIE’s CA*net, NetherLight and National
LambdaRail [2]. Software is being developed for rapidly
provisioning an end-to-end lightpath for dedicated bandwidth
(referred to as “User Controlled Lightpath”), as and when
needed by an application [3]. Such networks which provide
dedicated wavelengths for point-to-point connectivity have
been referred to in the literature as lambda-grids.

Our objective in this work is to device a model for such
large-scale file transfers which may be required by GTL-
like applications. The problem is formulated as follows. Let

1This work was supported by a joint UC-LANL CARE grant.

G(V,E) denote an optical circuit switched network topology,
whereV denotes a geographical end node andE denotes an
optical fiber between two nodes.w(e), e ∈ E denotes the
number of wavelengths available on each fiber. Data files are
to be transferred from some of these nodes to asupercomputer
at noded. Let fi,j , j ∈ V denote these files,|i| being the
number of files at a node.S(fi,j) denotes the size of each
file. The objective is to find the following:

1) Route in the network along which a circuit should be
established to transfer each file. The route determines
the virtual links (wavelengths) in the network required
to establish the circuit.

2) The time interval in which the circuit should be estab-
lished, for the file transfer to take place.

An algorithm for scheduling file transfer on a dedicated
optical path, which considered allocation of varying bandwidth
levels for different time ranges was considered in [4]. Our
work considers routing in addition to time scheduling, which
makes it more challenging.

The protocol for data aggregation is as follows. The files
needed for computations are first determined by thesuper-
computer. The size of each file is queried from each data
center. Although a file of known size is being transferred
over a dedicated circuit, the file transfer time shows some
variance because of the end host performance and thereby the
flow control by the transport protocol. Hence, we consider
predicting the circuit holding times based on previous profiles
of file transfer rates. These predictions are used for developing
an offline schedule. This offline schedule depicts the route
and the transfer interval for each filefi,j . Let Ts(fi,j) and
Te(fi,j) denote the start time and the end time respectively
for the transfer of each file.Virtual link reservations are then
made for this file transfer from nodej to noded over the
determined route, for the time intervalTs(fi,j) – Te(fi,j). The
actual transfer times are expected to differ from the predicted
values. Therefore the file transfer schedule constructed by
the offline problem, is modified online as actual file transfers
occur. In this process, we take care not to affectvirtual link
reservations that were already made by the offline schedule.
The primary objective is to minimize the total time required
for data aggregation, which we define as theactual finish time.

It should be noted that offline scheduling is important in
order to make the link reservations. Offline scheduling may
avoid congested links/ hotspots in the network, so it is very
valuable. The other alternative would be to transfer as many
files as possible at a time. The next file may be transferred
only after some links are freed due to the complete transfer

Proc. of the 3rd International Workshop on Protocols for Fast Long-Distance Networks (PFLDnet), Lyon, France, February 2005.
LA-UR-05-7911

of a previous file. While this approach may be efficient for a
dedicated network, it is not appropriate in a shared network
where congestion may arise due to background traffic.

II. OFFLINE SCHEDULING

In our previous work [5], we modelled the offline
scheduling problem as a Time-Path Scheduling Problem
(TPSP). We showed that this problem is NP-complete, and
devised an Integer Linear Programming based mathematical
model for an exact solution, and three heuristics to achieve
approximate solutions. We showed that the heuristics yielded
favourable results in much less time complexity than the
linear program. Here we consider one of them, the Longest
File First (LFF) heuristic for offline scheduling.

LONGEST-FILE-FIRST (LFF) SCHEDULING
This heuristic is based on the intuition that the longest file
(having the largest transfer time) is the bottleneck for schedul-
ing, because it requires more resources in terms of the amount
of time required to be free on the links, for it to be transferred.
Therefore, the LFF algorithm aims at scheduling the longest
files first, so that they get priority on the network’s resources
and get scheduled earlier. For choosing the path over which
to transfer a file, the algorithm chooses the best path among
K randomly chosen paths. The idea is to prevent one set of
links from being selectively congested by files from a node,
as would happen if we had always chosen the shortest path.

The steps are outlined below.
1) Choose the longest fileF which has not yet been

scheduled.
2) Find random K - alternate paths from the source node

of file F to destinationd. Random K - alternate paths
may be achieved by randomly picking the weights of
the links and applying Dijkstra’s algorithm to compute
the shortest path [6].

3) Out of these K paths, find one in which fileF can be
scheduled at the earliest.

4) Repeat (1) until all files are scheduled.
The above algorithm assumes that file transfer times are

provided to us. However, it is difficult to predict file trans-
fer times accurately. A prediction framework based on past
transfer profiles was proposed in [7]. Various predictors such
as weighted average and median based predictors were sug-
gested. Most predictors had average error margins of 6 –
15% compared to measured transfer times. Our experiments
using recently proposed protocols for large bandwidth-delay
product circuits yielded similar results. We considered two
different protocols, UDT [9], and RBUDP [10]. We tuned the
protocols for the best possible transfer rates. A large file of
800 MB is transferred between two machines connected via a
dummynet [8] shown in Fig. 1. The configuration of the three
machines is shown in Table I. We restricted ourself to memory-
to-memory transfers using RAMDisks, because we did not
have access to high-speed disks. The transfer delay between
the two machines is set to be 50ms using the dummynet. The
statistics of the 200 file transfers using UDT and RBUDP,

TABLE I

MACHINE CONFIGURATION

Processor Intel Pentium IV, 2.80GHz for end-hosts,
Intel Xeon 3.06 GHz with dual PCMCIA bus
for dummynet.

Physical Memory 1 GB
Kernel Linux 2.4.27 for end-hosts,

Free BSD v4.9 for dummynet
Line card Intel 1 Gbps Ethernet line cards

TABLE II

STATISTICS OF TRANSFER TIME

Statistics UDT RBUDP
Max Transfer Time 19.81 sec 34.67 sec
Min Transfer Time 17.31 sec 11.83 sec
Average 17.87 sec 14.47 sec
Standard Deviation 0.3 sec 4.35 sec
Range/ Mean % 13.9 % 157.8 %
St. Dev. / Mean % 1.7 % 30 %

and a sample distribution of the transfer times using UDT, are
shown in Table II and Fig. 2.

1 Gbps
link

1 Gbps
link

Sending
host

Receiving
host

dummynet
(Configuring
delay)

Fig. 1. Dummynet setup [8].Distribution of transfer times for transfer of 800 MB files using UDT
Delay between end hos ts = 50ms

0

10

20

30

40

50

60

17.3 -
17.4

17.4 -
17.5

17.5 -
17.6

17.6 -
17.7

17.7 -
17.8

17.8 -
17.9

17.9 -
18.0

18.0 -
18.1

18.1 -
18.2

18.2 -
18.3

18.4 -
18.5

18.5 -
18.6

19.7-
19.8

Time range in seconds

Fig. 2. Distribution of transfer times using UDT.
We observe that the distribution of transfer times is close to

a normal distribution. In the case of UDT, although the stan-
dard deviation is low (0.3%), the range of observed transfer
times is quite high (13.9%). The variations may be explained
by the fact that UDT employs flow control and congestion
control mechanisms. Congestion control is not significant in
dedicated circuits. However flow control is important because
at high transfer rates, the receiver buffer at the network line
card is frequently overrun, because the multitasking operating
system is sometimes not scheduled for transferring data from
the buffer to the memory. We observed that as the system
load on the receiver is increased, more packets are dropped at

the receiver buffer. We also observed a couple of instances of
transfer time being much greater than the mean (in the range
19.7 – 19.8 secs). RBUDP exhibits a much higher standard
deviation and range. When the error rate at the receiver buffer
is high, RBUDP cannot recover because it doesn’t employ flow
control. Hence, a large number of retransmits occur.

Since circuits are reserved in advance for file transfers, we
would like the circuit holding time to be larger than the actual
file transfer time, so that we do not have to establish another
circuit in future to transfer the same file. The most conservative
approach would be to take the largest transfer time (or lowest
transfer bandwidth) out of past profiles of file transfers as
the circuit holding time. Although this would guarantee that
almost all files are transmitted within the circuit holding time,
it may lead to poor circuit utilization. On the other hand, taking
a more aggressive estimate like mean of past transfer times
would lead to a large number of files not being delivered in
their allocated times. The choice of prediction of the circuit
holding time is therefore important.

We discuss the various prediction strategies after discussing
the online scheduling.

III. O NLINE SCHEDULING

As discussed above, when a file is actually transferred in
accordance with the offline schedule, two scenarios may occur.
Either the file is fully transferred within the circuit holding
time (Early Finish), otherwise it is not fully transferred
(Incomplete File Transfer).

Case I: Early Finish:
The present circuit may be torn down. Thevirtual links which
this circuit was using are now free. There may be future
circuits in the offline schedule which use some of these links.
Since these links had already been reserved by the current
application, the future circuits may be pulled back in time,
so that the corresponding file transfers begin earlier than they
were scheduled in the offline schedule. This helps improve
link utilization and reduces the total time required for data
aggregation. The algorithm which is invoked for each file
transferred early, is presented as follows:

Algorithm Modify ScheduleEarly Finish
(Circuit, Actual F inish T ime, Scheduled F inish T ime)
// All three parameters above refer to the file transferred early.

1) Consider a particular virtual link on theCircuit.
2) If a file transfer is scheduled to begin atSched-

uled Finish Timeon this link:

a) Identify other virtual links for this file.
b) Check if this file may be scheduled to start

transfer between Actual F inish T ime and
Scheduled F inish T ime on these links. Ifyes,
modify the offline schedule to start file transfer at
this time.

3) Repeat above steps for all virtual links in theCircuit.

It should be noted, that the above algorithm does not alter
the virtual link reservations which had been made by the
offline schedule, it only alters the circuit start times. Moreover,

if a circuit is indeed modified to start earlier than its scheduled
time, the end time is kept the same. Thus the circuit holding
time will increase. This may help providing more margin for
an incomplete file transfer event.

Case II: Incomplete File Transfer:
We assume that the holding time of the current circuit may not
be extended, as the virtual links may be reserved for transfer
of a different file of the same application or for a different
application. In case of the former, although the transfer of the
next file may be delayed, it delays the entire offline schedule.

For incomplete file transfers, two different options are
available. The first is to retransmit the whole file after es-
tablishing a new circuit. The second is to transmit only the
remaining portion of the file which could not be transmitted.
The former is simple to implement and also does not require
any application level fragmentation and reassembly of file
components. However, the time duration in which the file
was being originally transmitted is completely lost. The latter
requires marking of correctly transmitted sequence numbers
by the transport protocol, so that retransmission may begin
from the last marked window. In this work we study the former
approach, and plan to discuss the latter if our work is accepted
for presentation at the workshop. We note that both approaches
require establishing a new circuit and hence require new virtual
link reservations to be made.

Algorithm Incomplete File Transfer (File Number)

1) In the lines of the LFF heuristic, chooseK different
paths along which this file may be transmitted.

2) The predicted transfer time is chosen as the highest
transfer time (or lowest transfer bandwidth) of past
transfer profiles. The idea here is to avoid an incomplete
transfer again.

3) Determine the path along which the file may be sched-
uled at the earliest. Add this to the offline schedule.

IV. RESULTS

We consider the topology depicted in Fig. 3 for our
simulations. This topology is the DoE UltraScienceNet [11]
superimposed on the National LambdaRail (NLR) network
[2]. Major DoE sites are connected to the nearest network
points of presence (PoPs) with 1 Gbps links. The network
backbone (shown in bold lines in the figure) may carry 2 1-
Gbps connections on two different wavelengths along each
physical link. We note that the above are sample numbers
for the purposes of illustration, a lambda-grid may have a
much higher number of wavelengths per physical link. We
consider the supercomputer node to connected to the Houston
PoP, and assume that the supercomputer may receive 6 1-
Gbps connections simultaneously on different wavelengths, so
that there is no bottleneck between the supercomputer and the
network. We assume that background traffic is absent, because
our objective is to demonstrate the performance of the online
algorithms.

Files are of sizes uniformly distributed from 400 MB to
800 MB, and are randomly distributed across the DoE sites.
We limit our maximum file size to 800 MB because of

SEA

PNNL

LLNLLBNL

NERSC

SLAC

IGI

SUNY

LA

SD

SDSC

ELP

ABQ

LANL

SNL

HOU
Supercomputer

KCDEN

CHI

FNAL

ANL

ORNL

ATL

CLE
BOS

PPPL

BNL

JLab

2000

1100800

400

2000

700
250

400

750

750

750

700

600
400

350
600

DC

350 400

600

Backbone NLR
Backbone DOE
Ultrascience Net

Distances in miles

Fig. 3. Topology used for simulation [2], [11]

the limitation of using only memory-to-memory transfers.
All files are transferred using the network backbone to the
supercomputer. The transport protocol that we use is UDT
[9], tuned appropriately for performance in the bandwidth-
delay product settings that we have here.

For prediction of circuit holding times, we maintain the
transfer profiles at each transmitting node (DoE site) for file
transfers to thesupercomputer. Since transfer rates may vary
across file sizes and file transfer times may not be linearly
extrapolated with file size [7], we maintain different profiles
at intervals of 100 MB in file size. Within the 100 MB file
size range, the prediction of time is linearly extrapolated. Our
prediction algorithm considers the past 50 file transfers. We
consider different predictors, the predicted value being varied
by considering different numbers of standard deviation away
from mean, which would correspond to the upper limit of
a confidence interval in a normal distribution. Our objective
is to predict circuit holding times, which lead to complete
file transfers for most files, without leading to poor circuit
utilization and compromising on theactual finish time.

Once the offline schedule is computed from the predicted
values using the LFF heuristic, the corresponding file transfer
events are generated in a Java based discrete event simulator.
For each file transfer event, a file of the same size is transferred
between two end hosts via the dummynet. The delay in the
dummynet router is set to be the exact end-to-end link delay,
as would be if a circuit were established in the network. We
use the link distances in the topology in Fig. 3 to compute the
link delay. Thus our experimental setup is a close reflection
of what would happen in an actual circuit setup. Once the
file has been transferred, the transfer time is measured. The
online algorithms mentioned above are invoked thereafter to
reconfigure the offline schedule. Our results for the transfer
of 30 and 50 files for different predictive schemes are shown
in Table III and Table IV, respectively. For each predictive
scheme we considered 10 different iterations of experiments.
Of particular importance are the maximum and minimum
actual finish timefor each predictive scheme.

As expected, using a higher prediction, leads to higher
offline schedule finish time. The results above show that a
limited number of incomplete file transfers does not have an
adverse effect on theactual finish time. This is because the
offline schedule generated usually has some links free, and the
incomplete files may be transferred using these links. However,

TABLE III

RESULTS FORTRANSFER OF30 FILES.

Predictor TOffavg TFinMax
NRMax

TFinMin
NRMin

m 90.5 200.9 23 130.5 16
m + σ 91.4 154.6 18 89.7 1
m+1.25σ 91.6 150.4 16 94.2 5
m + 1.5σ 91.8 151.6 15 90.5 4
m+1.75σ 92.1 139.0 6 91.2 2
m + 2σ 92.5 92.1 4 90.7 2
m + 2.5σ 93.2 92.5 4 91.2 0
m + 3σ 93.8 93.0 0 92.0 1

TABLE IV

RESULTS FORTRANSFER OF50 FILES.

Predictor TOffavg TFinMax
NRMax

TFinMin
NRMin

m 134.8 258.4 44 221.8 34
m + σ 136.9 204.3 23 137.3 1
m+1.25σ 137.1 180.2 10 156.5 4
m + 1.5σ 137.7 177.3 13 140.8 2
m+1.75σ 138.4 167.9 8 135.0 0
m + 2σ 139.4 137.1 2 136.5 0
m + 2.5σ 139.6 137.5 0 136.8 0
m + 3σ 140.8 138.0 0 137.2 0

m: Mean,σ: Standard Deviation.
Predictor: Predicted value of Circuit Holding Time.
TOffavg : Average offline schedule finish time (seconds).
TFinMin

: Minimum observed actual finish time in 10 transfers (seconds).
NRMin

: Number of retransmits for the occurance ofTFinMin
.

TFinMax
: Maximum observed actual finish time in 10 transfers (seconds).

NRMax
: Number of retransmits for the occurance ofTFinMax

.

if the number of incomplete transfers are high, as it happens
when some of the lower predictors are chosen, then theactual
finish timeincreases significantly.

Hence, a predictor which achieves a reasonable number of
incomplete transfers is appropriate. From the above results,
we find that the predictorsm + 2σ, m + 2.5σ and m + 3σ
give the desired values ofactual finish times. Comparing these
three predictors, we find that out of them, the highest predictor
(m + 3σ) does not lead to the bestactual finish time. The
online Modify Schedule Early F inish algorithm tries to
pull back circuit start times in case of early finish. But since
files are sent along different links, if all the links required for
the transfer of the next file are not available, the file cannot be
scheduled earlier. Hence, long circuit holding times may lead
to poor link utilization, and may create congestion for another
file transfer.

V. CONCLUSION

Our aim in this work has been to present a complete
picture of transfer of large files over a backbone network for
a large-scale scientific computation application like GTL. We
present a hybrid approach that combines offline and online
scheduling. We then demonstrate the effectiveness of our
algorithms by performing a hardware based simulation which
closely approximates an expected real scenario.

REFERENCES

[1] “Genomes To Life requires new life from Networks,”
Department of Energy (DoE) (United States) Workshop, 2003,
http://www.csm.ornl.gov/ghpn/genomewk2003.pdf

[2] National LambdaRail Inc. at http://www.nlr.net

[3] “CANARIE demonstrates first-of-its-kind software” at
http://www.canarie.ca/press/releases/0406 25.html

[4] M. Veeraraghavanet. al., “Scheduling and transport for file transfers on
High-Speed Optical Circuits”,Proc. PFLDnet 2004, Chicago, USA

[5] A. Banerjee et. al., “A Time-Path Scheduling Problem (TPSP) for
aggregating Large data Files from Distributed Databases using an Optical
Burst-Switched Network”,Proc. ICC 2004, Paris, France

[6] T. Cormen, C. Leiserson, R. Rivest and C. Stein, “Introduction to
Algorithms,” Second Edition, MIT Press, 2001.

[7] S. Vazhkudai, J. Schopf, and I. Foster, “Predicting the Performance
of Wide Area Data Transfers,”Proc.of IPDPSI 2002, Fort Lauderdale,
Florida, USA

[8] L. Rizzo, “Dummynet: A Simple Approach to the Evaluation of Network
Protocols,” ACM Computer Communication Review, 1997.

[9] Y. Gu and R. Grossman, “UDT: An Application Level Transport Protocol
for Grid Computing,”Proc. PFLDnet 2004, Chicago, USA

[10] E. He, J. Leigh, O.Yu, T. A. DeFanti, “Reliable Blast UDP : Predictable
High Performance Bulk Data Transfer,”Proc. IEEE Cluster Computing,
Chicago, Illinois, 2002.

[11] DOE UltraScience net testbed at http://www.csm.ornl.gov/ultranet/

